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ABSTRACT
Immersive telepresence has the potential to revolutionize remote
communication by offering a highly interactive and engaging user
experience. However, state-of-the-art exchanges large volumes of
3D content to achieve satisfactory visual quality, resulting in sub-
stantial Internet bandwidth consumption. To tackle this challenge,
we introduceMagicStream, a first-of-its-kind semantic-driven im-
mersive telepresence system that effectively extracts and delivers
compact semantic details of captured 3D representation of users,
instead of traditional bit-by-bit communication of raw content.
To minimize bandwidth consumption while maintaining low end-
to-end latency and high visual quality, MagicStream incorporates
the following key innovations: (1) efficient extraction of user’s
skin/cloth color and motion semantics based on lighting character-
istics and body keypoints, respectively; (2) novel, real-time human
body reconstruction from motion semantics; and (3) on-the-fly neu-
ral rendering of users’ immersive representation with color seman-
tics. We implement a prototype of MagicStream and extensively
evaluate its performance through both controlled experiments and
user trials. Our results show that, compared to existing schemes,
MagicStream can drastically reduce Internet bandwidth usage by
up to 1195× while maintaining good visual quality.

CCS CONCEPTS
• Information systems→Multimedia streaming; • Comput-
ing methodologies →Mixed / augmented reality.
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1 INTRODUCTION
Immersive telepresence, a primary use case in the envisioned 6G [31,
85, 88], holds the promise of revolutionizing remote communica-
tion by providing deeply engaging and interactive user experiences.
Immersive content that depicts 3D objects/scenes is typically repre-
sented by point clouds or meshes [14, 19], allowing users to not only
change view directions but also move freely in 3D space, known
as six degrees of freedom (6DoF) motion. This capability has pro-
pelled the adoption of immersive content across various domains,
such as healthcare, education, professional training, scientific data
visualization, and entertainment [95]. As a result, recent years have
seen intensifying efforts to advance immersive content delivery and
enhance its quality of experience (QoE) [40, 49, 60, 103, 115, 117].

While existing solutions primarily optimize video-on-demand ser-
vices that distribute pre-recorded content, live immersive content de-
livery offers a broader spectrum of compelling applications for telep-
resence, such as telesurgery [25] and remote collaborations [92].
However, achieving a truly immersive and highly interactive user
experience for telepresence poses the following challenges.
• Due to its 3D nature, streaming high-fidelity immersive content
demands substantial network bandwidth, for example, >1 Gbps
throughput in Holoportation [71].
• The interactivity of immersive telepresence necessitates ultra-low
end-to-end latency for live content delivery, typically under 100 ms
for one-way communication [16, 18, 69].
• Real-time delivery of immersive content requires maintaining
at least 30 frames per second (FPS) streaming rate (i.e., <33 ms
processing time per frame), to ensure fluid motion and continuity
in user interactions [39, 40, 48, 60, 115, 117].

Meanwhile, today’s Internet may not adequately support bit-by-
bit communication of raw data for immersive telepresence with
representations such as point cloud and mesh. Existing point-cloud-
based systems for immersive telepresence, even at medium quality,
can demand over 70 Mbps of bandwidth per participant [39], which
is close to what is offered by standard broadband services in the
U.S. (i.e., 100 Mbps [28]). However, sudden bandwidth drops are
common and can significantly affect QoE [83]. Also, network links
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Figure 1: Comparison of a representative existing scheme
MetaStream [39] (top) and ourMagicStream (bottom).

are typically shared among multiple applications, making it un-
desirable for a single application to consume the majority of the
available bandwidth [64]. Furthermore, certain use cases for immer-
sive applications, such as video conferencing, often involve multi-
ple concurrent users, which exacerbates bandwidth demands [64].
Therefore, it is imperative to optimize the bandwidth consumption
of immersive telepresence systems.

In response to these challenges, we presentMagicStream, which
is, to the best of our knowledge, the first semantic-driven immer-
sive telepresence system. Our key insight is that delivering im-
mersive content with exact bit-by-bit precision, which leads to
high-bandwidth demands, is often unnecessary in certain use cases
such as teleconferencing. Instead, the focus should be on conveying
pivotal interactions or notable events, such as a speaker’s key ges-
tures and facial expressions. Thus, for telepresence that involves
mainly users, we can transmit only their meaningful semantic de-
tails, which are used to reconstruct their immersive representation.
Figure 1 compares the common bit-by-bit communication employed
by the state-of-the-art, MetaStream [39], and semantic communica-
tion adopted byMagicStream. We further compareMagicStream
with other existing systems [47, 48, 71] in Table 1.

The overarching goal of MagicStream is to leverage semantic
communication to significantly reduce bandwidth usage, while pre-
serving low end-to-end latency and ensuring satisfactory visual
quality simultaneously for users wearing a resource-constrained
mobile headset such as Microsoft HoloLens 2 [2]. Realizing seman-
tic communication for immersive telepresence typically entails the
extraction of semantics at the sender, transmission over the Internet,
and reconstruction of immersive content from derived semantics
at the receiver. Hence, fundamentally, the principal challenges for
designingMagicStream are: 1) properly identifying and accurately
extracting semantics from captured 3D data of users, and 2) recon-
structing users’ immersive representation from received semantics
with high visual quality, both in real time. To address these chal-
lenges, MagicStream incorporates the following innovations into
a holistic system.
Efficient Extraction of Color & Motion Semantics (§4.1). Ex-
tracting semantics is the first key step in semantic communication
for MagicStream. Typically, a user’s representation can be decom-
posed into skin/clothing color and bodymovement. For color seman-
tics, our insight is that the user’s perceived color is a combination
of the base color of the skin/cloth, which refers to the original color
before applying any lighting effects in computer graphics, and the
lighting characteristics of a scene. Under a reasonable assumption
that the user’s base color does not change during telepresence,
deriving color semantics is equivalent to extracting the lighting

System Tput Full Body Vis. Qual. Headset
Holoportation [71] H ✓ H ✓

Project Starline [47] H ✗ H ✗

FarfetchFusion [48] M ✗ M ✗

MetaStream [39] H ✓ M ✓

MagicStream L ✓ H ✓

Table 1: Comparison ofMagicStreamwith existing immersive
telepresence systems. Tput: throughput andVis. Qual.: Visual
Quality. L: low; M: medium; and H: high.

characteristics of the scene. Utilizing a lightweight lighting esti-
mation model [121], MagicStream achieves real-time extraction of
color semantics. For motion semantics, our insight is that tracking
the positions of specific important points (known as keypoints) in
the human body, such as joints, provides a sufficient basis to model
user movements. Thus, MagicStream capitalizes on an efficient
keypoint detection framework [62] to extract motion semantics.
Real-timeReconstruction fromMotion Semantics (§4.2).Upon
extracting motion semantics,MagicStream reconstructs the human
body by utilizing keypoints to drive SMPL-X [73], a parametric hu-
man model that can precisely represent body movements over time.
Despite the vital importance of SMPL-X in depicting human form
and motion, accurately estimating its parameters in real time is
challenging. Indeed, existing approaches sustain only <2 FPS (§2.2),
inadequate to ensure fluid motion and interactivity. Thus, we pro-
pose a novel regression-based method for estimating in real time
SMPL-X parameters with high accuracy from a sparse set of key-
points. Given that this task is still compute-intensive,MagicStream
conducts it at the sender side and delivers SMPL-X parameters,
instead of keypoints, to balance the computation overhead of the
sender and receiver.
On-the-fly Neural Rendering with Color Semantics (§4.3). On
the receiver side, upon obtaining color semantics and SMPL-X pa-
rameters, which are used to create an SMPL-X mesh,MagicStream
employs an optimized neural-rendering pipeline to display high-
quality content of the remote user in real time. This process involves
a two-stage rendering approach: initial rasterization [35] for ren-
dering a basic 2D image based on the SMPL-X mesh and color
semantics, followed by refinement with an image-based neural net-
work for rendering a high-quality representation of the remote
user. As neural rendering is time-consuming, we design a patch-
based acceleration strategy, which updates only specific portions
of the human body with noticeable changes, balancing the need
for real-time performance and high visual quality for immersive
telepresence. By doing this, we can also enable parallel rendering
of multiple patches.
Implementation and Evaluation ofMagicStream (§5, §6).We
build a prototype of MagicStream and thoroughly evaluate its per-
formance with controlled experiments on a dataset collected via
an IRB-approved user study to make our results reproducible and
separate user trials to assess the QoE. We summarize our key ex-
perimental results as follows.
•When offering similar visual quality as the state-of-the-art, MetaS-
tream [39], MagicStream drastically reduces bandwidth consump-
tion by 1195×, operating at only 0.2 Mbps.
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Figure 2: Qualitative comparison of (a) ground truth, (b)
MagicStream, and (c) MetaStream [39]. The network has a
symmetric bandwidth of ∼150 Mbps.

• Under a round-trip time of 40 ms [30],MagicStream achieves a
low one-way end-to-end latency of ∼95 ms, satisfying the stringent
requirement of interactive applications (i.e., <100 ms) [18], and
marks a 44.1% reduction compared to MetaStream [39].
• Under various network conditions, MagicStream consistently
operates at 30+ FPS, surpassing MetaStream [39], whose FPS is <10
for bandwidth-constrained scenarios.
•MagicStream achieves an SSIM (structural similarity) [101] index
of 0.92, which is calculated with screenshots collected on the Mi-
crosoft HoloLens 2 headset [2] at the receiver and the ground-truth
images captured at the sender, indicating a good visual quality [29].
In contrast, MetaStream leads to an SSIM index of ∼0.8.
• Our second user study indicates that MagicStream results in a
better QoE compared to MetaStream [39] under different network
conditions, with up to 86.7% improvement.

Beyond the above key results, we demonstrate howMagicStream
can quickly adapt to various changes in user appearance by fine-
tuning its neural rendering model in §6.2. Figure 2 qualitatively
compares MagicStream and MetaStream [39] over a network with
∼150Mbps symmetric bandwidth.We present more qualitative com-
parisons of them in §6.3 and record a video to visually demonstrate
their rendering quality1. Note that compared to 3D reconstruction
with wireless sensing [100, 106, 108, 119], which requires addi-
tional hardware and struggles to obtain colors, the vision-based
approach inMagicStream is more suitable for telepresence by di-
rectly capturing colors with cameras, an essential component of
such applications. This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
2.1 Background
Immersive Telepresence involves real-time capture, creation,
delivery, and rendering of immersive content, typically with mul-
tiple RGB-D (D for depth) cameras to cover different viewing an-
gles [39, 48, 71]. The synthesis of RGB-D images from these cam-
eras, achieved through synchronization, calibration, and filtering,
enables the generation of free-view 3D models, which are com-
monly represented as textured meshes or point clouds [114]. Mesh,

1https://youtu.be/u7U9iPND26E

a network of interconnected vertices forming a cohesive struc-
ture, incorporates both geometry (defining the shape and struc-
ture) and texture (adding surface detail such as color). In contrast,
point clouds are a set of discrete points with colors in 3D space.
In this paper, we primarily focus on users as the main subject of
immersive content, since they represent the key component in
telepresence [39, 47, 48, 71].

To ensure a satisfactory QoE, delivering immersive content in
point clouds or meshes necessitates significantly higher network
bandwidth than 2D video streaming. Relying exclusively on the
compression of immersive content is not sufficient due to its low
compression ratio [40]. Consequently, recent research has shifted
focus towards strategies that optimize both communication and
computation overhead [39, 48]. Despite these advancements, the
bandwidth requirement for transmitting medium-quality, full-body
immersive content is still high (e.g., ∼70 Mbps, as shown in §2.2).

Although volumetric content can be displayed across a vari-
ety of devices, including PCs, smartphones, tablets, and headsets,
its level of interactivity is fundamentally different across devices.
PCs can only emulate 6DoF motion through mouse and keyboard
input. While smartphones and tablets can track 3DoF rotational
movements, localization along translational dimensions remains
a challenging issue for them [15]. Current systems predominantly
use on-screen finger operations to manipulate content across trans-
lational dimensions [40], resulting in a sub-optimal user experience.
Conversely, headsets such as Microsoft HoloLens 2 [2] can natu-
rally support 6DoF motion thanks to their dedicated sensors and
specialized software framework.
Human Keypoints. Keypoints are specific and unique features
identifiable on an object. For human beings, keypoints are predom-
inantly situated in areas including the body, hands, and face [17].
Human keypoint detection, also known as human pose estimation,
involves detecting the positions (i.e., coordinates) of body parts or
joints from images or videos. Recent developments have demon-
strated that keypoint detection models can achieve high accuracy
and real-time performance [17, 84]. However, reconstructing visu-
ally satisfactory 3D content from keypoints is challenging. Existing
solutions that directly create a mesh from keypoints operate on a
single-frame basis [24, 58, 68]. Thus, they do not effectively cap-
ture the temporal dynamics inherent in human motion, potentially
resulting in unsatisfactory visual quality due to temporal discon-
tinuity and visual artifacts [74]. Moreover, as keypoints do not
encode texture information, the meshes reconstructed from them
lack texture, resulting in a geometry that portrays a non-clothed
body structure [24, 58, 67, 68].
Parametric Human Model. To enable accurate modeling of hu-
man movements over time, recent efforts [67, 79] resort to paramet-
ric human models such as SMPL-X [73]. These models are exten-
sively pre-trained on vast video datasets to capture a wide array
of human movement patterns, enabling them to accurately and
smoothly model human motion in various poses. SMPL-X is a state-
of-the-art parametric model with fully articulated hands and an
expressive face, which are essential in immersive telepresence. It
can be formulated as 𝑉𝑤 = 𝑊 (𝜙𝑤 , 𝜃𝑤 , 𝛽𝑤 ,𝜓𝑓 ), where𝑊 is a lin-
ear blend skinning (LBS) function [45], 𝜙𝑤 ∈ R3 represents the
global orientation of the whole body, 𝜃𝑤 ∈ R(21+15+15)×3 consists
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OpenPose Keypoints SMPL-X Parameter SMPL-X Mesh
0.35 0.16 10.1

Table 2: Comparison of required bandwidth (Mbps) at 30 FPS
for OpenPose keypoints [17], SMPL-X parameters [73], and
SMPL-X Mesh after data compression.

of whole-body pose parameters accounting for pose-dependent de-
formation, 𝛽𝑤 ∈ R10 denotes the shape of the face, hands, and body,
and 𝜓𝑓 ∈ R10 encompasses facial expression parameters. Specif-
ically, 𝜃𝑤 is subdivided into body pose parameters (𝜃𝑏 ∈ R21×3),
left-hand pose parameters (𝜃𝑙ℎ ∈ R15×3), and right-hand pose pa-
rameters (𝜃𝑟ℎ ∈ R15×3). All pose parameters are defined in the
axis-angle representation [4], which denotes the relative rotation to
the parent joints as defined in the kinematic map [97]. The output
of SMPL-X, 𝑉𝑤 ∈ R10,475×3, is a 3D mesh comprising 10,475 ver-
tices. The spatial position of each vertex is determined by SMPL-X
parameters and its LBS weight.

2.2 Motivational Study
Traditional Bit-by-bit Communication. To benchmark the re-
quirements of immersive telepresence employing bit-by-bit com-
munication, we re-implement MetaStream [39], a state-of-the-art
point-cloud-based telepresence system. Our implementation has
a similar performance to that reported in the original paper. Over
five sessions of five minutes each, the average bandwidth consump-
tion after applying compression and communication optimization
is 72.3 Mbps (SD: 8.65). Note that MetaStream transmitted only
∼200K points for each frame. However, high-quality streaming may
require the delivery of >1M points per frame at 30 FPS [49], poten-
tially demanding a network bandwidth as high as 450 Mbps [49],
even after considering various visibility-aware optimizations [40].
Moreover, our experiments indicate that decoding 1M points on
HoloLens 2 [2] achieves only <7 FPS, much lower than the required
real-time frame rate (i.e., at least 30 FPS).
Semantic Communication. To drastically reduce the bandwidth
demand of immersive telepresence, a potential solution is to lever-
age semantic communication where, instead of delivering raw data,
we transmit “instructions” (e.g., semantics for body motion and
skin/cloth color) to reconstruct 3D content. We next investigate
the potential benefits of semantic communication for immersive
telepresence, along with its proper setup and open challenges.

We use a ZED 2i depth camera [11] to capture RGB-D data in
2K resolution and leverage OpenPose [17] to identify up to 135
2D keypoints across the human body. We then estimate SMPL-X
parameters with SMPLify-X [73], a state-of-the-art optimization-
based solution widely recognized as a benchmark in various stud-
ies [26, 33]. SMPLify-X uses the RGB image and the keypoints
detected by OpenPose [17] to estimate SMPL-X parameters, which
can be used to generate the SMPL-X mesh. We capture five sessions
with ∼600 frames each where users perform arbitrary poses. We
use a desktop machine with an NVIDIA RTX 4090 GPU, an AMD
Ryzen 9 7900X CPU, and 32GB RAM at both the sender and receiver
sides of a test-case immersive telepresence.
(1) Data Size. We first compare the data size of OpenPose key-
points, SMPL-X parameters, and SMPL-X mesh. To compress SMPL-
X mesh, we utilize Draco [5], a 3D content compression framework

Keypoint SMPL-X Parameter SMPL-X Mesh
Detection Estimation Reconstruction
32.2/4.23 0.018/0.007 331/1.32

Table 3: The averaged FPS and its standard deviation of Open-
Pose keypoint detection, SMPL-X parameter estimation from
SMPLify-X [73], and SMPL-X mesh reconstruction.

that is commonly used in existing systems [39, 40]. To compress
OpenPose keypoints and SMPL-X parameters, we test four popular
compression schemes: Zstandard [13], LZMA [6], zlib [12], and
LZ4 [8]. We find that LZMA offers the highest compression ratio.

Table 2 shows the required bandwidth (after compression) for
these three data types at 30 FPS. Transmitting keypoints or SMPL-
X parameters has the potential to dramatically reduce bandwidth
usage (i.e., 0.16-0.35 Mbps vs. 10.1 Mbps required by SMPL-X mesh).
Note that although streaming the SMPL-Xmesh takes only∼10Mbps,
the visual quality is low if we directly display it.
(2) Runtime.We next examine the FPS achieved by keypoint detec-
tion, SMPL-X parameter estimation, and SMPL-X mesh reconstruc-
tion, as shown in Table 3. Both keypoint detection and SMPL-X
mesh reconstruction can operate in real time (i.e., >30 FPS). How-
ever, SMPL-X parameter estimation achieves only <0.02 FPS. This
is because SMPLify-X [73], while accurate, requires iterative pro-
cessing during its optimization phase. In contrast, since an SMPL-X
mesh has a fixed topology, generating it from parameters involves
only fast vertex deformation based on pre-defined LBS weights.
(3) Texture Transmission and Rendering. An SMPL-X mesh con-
tains only geometry without texture (e.g., color information) [73],
which is essential for photo-realistic content rendering. A straight-
forward solution is to transmit high-resolution, multi-view RGB-
D images for mapping texture on the SMPL-X mesh at the re-
ceiver [36]. To understand the bandwidth requirement and the
visual quality of this approach, we utilize three ZED 2i cameras [11]
for capturing a user from different views. FollowingMetaStream [39],
we first use H.264 [3] to encode RGB-D images. The consumed band-
width at 30 FPS is 32.1 Mbps (SD: 5.37). We then conduct texture
mapping and calculate the SSIM [101] with camera-captured images.
SSIM is a metric that integrates luminance, contrast, and structural
comparisons between two images to assess their similarity. Its value
ranges from 0 to 1, with a larger value indicating higher similarity
and, consequently, better visual quality, and vice versa. The SSIM is
only 0.63 (SD: 0.02), indicating poor visual quality [29]. This primar-
ily stems from the low-quality geometry of SMPL-X mesh, which
negatively impacts rendering quality [35].
Takeaways.Our study highlights the potential of semantic commu-
nication to significantly reduce the bandwidth usage of immersive
telepresence. However, semantic communication introduces the
following major challenges that we aim to address inMagicStream.
First, estimating SMPL-X parameters requires significant acceler-
ation (i.e., from <0.02 FPS to >30 FPS) without comprising recon-
struction quality. Second, directly transmitting texture-related data
still requires high bandwidth. Therefore, we need to properly iden-
tify color semantics. Third, due to potential information loss during
the extraction of semantics, rendering high-quality, photo-realistic
content of a user is non-trivial.
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Figure 3: System architecture and workflow ofMagicStream.
For simplicity, we depict only one-way communication for
telepresence. The opposite direction mirrors this figure. “Re-
construction” is executed at the sender side for load bal-
ancing between the sender and receiver. The reason is that
the computation-intensive neural rendering should be per-
formed by the receiver.

3 OVERVIEW OF MAGICSTREAM
Figure 3 depicts the system architecture of MagicStream and its
workflow of semantic communication for immersive telepresence.
Due to the resource restrictions of mobile headsets, users are served
by an edge server that performs computation-intensive tasks (i.e.,
SMPL-X parameter estimation and neural rendering).MagicStream
delivers SMPL-X parameters, instead of keypoints, since estimating
SMPL-X parameters at the sender can effectually balance the com-
putation overhead of the sender and the receiver, which needs to
conduct resource-demanding neural rendering. Also, as shown in
Table 2, the data size of SMPL-X parameters is essentially smaller
than that of keypoints.

Prior to telepresence, MagicStream requires a user profiling
phase to fine-tune/train the following models. During this phase,
participants are asked to spin a circle (∼10–20s) in front of multiple
recording RGB-D cameras. The data gathered from these recordings
is used to fine-tune the lighting estimation model (§4.1), and train
the models for SMPL-X parameter estimation (§4.2) and neural
rendering (§4.3). Meanwhile, we obtain the user’s base color with
an existing approach [87] and transmit it along with the neural
rendering model to the receiver ahead of telepresence sessions.

4 MAGICSTREAM DESIGN
4.1 Efficient Extraction of Color and Motion

Semantics from RGB-D Data

Insights. Successfully extracting semantics requires precise iden-
tification of key features that represent the human body during
immersive telepresence. Our design choice is motivated by the fact
that 3D models such as meshes can be essentially decomposed into
surface details such as colors and the geometry that defines shape
and structure (§2.1). Thus, we propose to derive semantics that
represent color and geometry separately inMagicStream.

To extract color semantics, consider a scenario where the user
waves the hand. As the hand moves towards a light source, its color
perceptibly shifts towards that of the light. Conversely, when the
hand moves away from the light, it may appear darker. Given that
an individual’s skin color should be constant during telepresence,
the observed changes in color are attributed to alterations in how

light interacts with the skin. These alterations are governed by
the characteristics of the light source(s) within the scene. Drawing
from the above analysis, the factors influencing color representa-
tion are: (1) the inherent base color, (2) human pose, and (3) light
characteristics. We can safely assume that the base color of the
skin/cloth does not change during a telepresence session, and thus,
it can be obtained during user profiling. Further, the human pose
can be described as keypoints, which we will discuss next. Thus,
our first key insight is that lighting characteristics are the essential
color semantics.

The next step is to extract semantics to represent the geometry
of the human body. One caveat is that this should not be done
on a single-frame basis, which does not capture the temporal dy-
namics inherent in video frames, leading to unsatisfactory visual
quality due to temporal discontinuity and artifacts [74]. Thus, we
propose to extract motion semantics to represent the geometry, by
capturing key body movements across frames. These movements
are essentially driven by the articulation of bones and joints [41],
which are inherently complex. Our observation is that focusing
on certain critical points in the body is sufficient to approximate
human motion. For example, by extracting the position of each
joint in the user’s hand and tracking these positional changes, we
can accurately capture hand movements. These critical points are
typically identified as keypoints. Therefore, our second key insight
is that keypoints could serve as motion semantics, as tracking their
changes can effectively model human body movements over time.
Solution. To extract color semantics, we employ Xihe [121], a
lightweight lighting estimation framework. Xihe outputs a 27-
dimensional coefficient vector to encapsulate the comprehensive
lighting characteristics of the scene. However, one issue of Xihe
is that its initial design is not tailored to human-centric scenarios.
To address this problem, we utilize the pre-trained Xihe model as
the foundation and fine-tune it with user-profiling data, which is
supervised by an accurate, diffusion-based [110], and face-centered
lighting estimation model [75]. We choose facial features for light
estimation, instead of those of other body parts, because the facial
region offers a strong geometric prior that can improve the accu-
racy [50]. Additionally, using facial features allows us to efficiently
prevent potential distortions caused by clothing materials, such as
reflections and varying textures.

The frequency of estimating and delivering light characteristics
is contingent upon the specific lighting conditions of the telepres-
ence environment. For instance, in settings exposed to sunlight,
more frequent updates are needed due to the dynamic nature of
natural light. Conversely, in indoor environments with stable artifi-
cial light and limited changes in the intensity and number of light
sources, less frequent updates are sufficient. Nevertheless, the rep-
resentation of lighting characteristics as a compact 27-dimensional
coefficient vector allows for efficient data communication. Even
whenMagicStream transmits these coefficients for each frame, the
bandwidth consumption remains remarkably low, with 53.76 Kbps
at 30 FPS after applying the LZMA compression [6].

To extractmotion semantics,MagicStream utilizesMediaPipe [62],
a lightweight keypoint detection model, which provides more key-
points (524 vs. 135), faster execution (∼10 ms), and higher detection
accuracy [27] than OpenPose [17].
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4.2 Real-time Human Body Reconstruction
from Motion Semantics

Challenges. As directly reconstructing a 3D model from keypoints
will lead to poor visual quality, MagicStream first reconstructs
a non-colored human body by mapping keypoints to the output
mesh of SMPL-X [73], a parametric human model that can repre-
sent body movements over time (§2.1). This mesh will be further
refined by our proposed neural rendering model in §4.3. However,
precisely estimating SMPL-X parameters that control the SMPL-X
mesh in real time is non-trivial because they integrate complex
representations for hand postures and facial expressions. As shown
in §2.2, optimization-based schemes [73] are notoriously time-
consuming. While recent studies have shown that image-centric
methods [26, 33] execute faster than optimization-based ones, their
processing time (e.g., ∼200 ms per frame [26]) is still too high to
meet the real-time requirements of interactive telepresence.

This poor performance of image-centric methods [26, 33] is due
to two main drawbacks. First, they estimate SMPL-X parameters
based on dense features extracted from images, incurring a high
computation overhead. Second, to accurately extract dense features,
they typically utilize complex deep-learning models such as atten-
tion [94], further prolonging the delay in parameter estimation.
Solution. To achieve real-time SMPL-X parameter estimation, we
design a lightweight regression-based method that relies on key-
points as input, instead of images. As keypoints contain less in-
formation than images, this enables faster execution than image-
centric methods [26, 33].

The goal of our regression-based method is to train a deep-
learning model which establishes a relationship between the input
keypoints and the output SMPL-X mesh through its SMPL-X pa-
rameters, controlling the generation of the mesh. However, directly
establishing an accurate mapping between keypoints and SMPL-X
mesh is non-trivial. An SMPL-X mesh has 10,475 vertices. Nonethe-
less, only 524 MediaPipe keypoints are available. To address this
problem, MagicStream introduces an innovative step before train-
ing: for each keypoint, we add a corresponding vertex to the first
ground-truth SMPL-X mesh. For example, given a keypoint on the
left wrist, we add a vertex to the SMPL-X mesh at the same position.
In essence, this alignment becomes an indicator of accuracy in our
training objectives. Our insight is that if the reconstructed SMPL-X
mesh accurately reflects the human form, any detected keypoints
should naturally align with their corresponding vertices on this
mesh, when they move independently over time along with body
motion. Note that to enable such correspondence, we introduce
additional vertices to the SMPL-X mesh, rather than seeking cor-
respondence in it, as certain keypoints’ locations/coordinates may
not align with any existing vertices of the mesh.

These newly added vertices, termed keypoint-anchored vertices
(KAVs), act as conduits. As shown in Figure 4, they directly connect
keypoints with the output SMPL-Xmesh, and thus aid in the precise
estimation of SMPL-X parameters. We add KAVs to only the first
ground truth SMPL-X mesh. For each keypoint, we add a vertex to
the mesh based on the keypoint’s 3D coordinates2. For each added
vertex 𝑣𝑘 , we find its nearest vertex 𝑣𝑔 on the SMPL-X mesh and

2We can lift detected 2D keypoints to 3D with depth information.
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Figure 4: Workflow of our proposed SMPL-X parameter es-
timation (KAVs: keypoint-anchored vertices). MagicStream
trains separate models for different body parts with key-
points and KAVs. During inference, given a set of input key-
points,MagicStream concurrently executes trained models to
estimate SMPL-X parameters for different body parts.

assign the LBSweight of 𝑣𝑔 to 𝑣𝑘 . By doing this, we ensure that KAVs
can be controlled by estimated SMPL-X parameters and realistically
deformed in harmony with the surrounding vertices (§2.1). For
meshes of other frames, we reuse KAVs from the previous one
while extracting keypoints from newly captured images to align
with those KAVs.

By building the connection between the keypoints and the SMPL-
X mesh, we can train a lightweight model to estimate SMPL-X
parameters from these keypoints without compromising accuracy.
Specifically, we design a five-layer multilayer perception (MLP)
model and deploy four parallel instances of it for the left hand,
right hand, face, and torso. To ensure that the output SMPL-X mesh
faithfully replicates the actual body pose, facial expressions, and
hand gestures captured by the keypoints over time, we minimize
both the mean squared error (MSE) between SMPL-X parameters
and their ground truth, as well as the mean per-joint position error
(MPJPE) [41] between each 3D keypoint and its corresponding
KAV. To supervise the training of the regression-based method, we
extend SMPLify-X [73] by incorporating keypoints observed from
multi-view cameras to generate SMPL-X parameters and meshes
offline as the ground truth due to its high accuracy, a common
approach used in previous studies [118, 122].

During inference, MagicStream processes incoming 3D key-
points from MediaPipe and applies the trained MLP models to
estimate SMPL-X parameters.

4.3 On-the-fly Neural Rendering with Color
Semantics

Challenges. On the receiver side, upon obtaining SMPL-X param-
eters (which are then used to generate an SMPL-X mesh) and color
semantics, rendering a photo-realistic representation of the remote
user in real time is essential for achieving a high QoE. However, it
is non-trivial, given the sparse nature of the SMPL-X mesh (i.e., hav-
ing only 10,475 vertices). Existing methods for rendering meshes
primarily involve conventional computer graphics pipelines, such
as explicit mesh rasterization [35]. This approach, while efficient,
often falls short of achieving high-quality rendering [89].
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Solution. To obtain photo-realistic visual quality, we leverage neu-
ral rendering [89], an emerging rendering paradigm that utilizes
deep-learning models. It combines generative deep learning [78]
with physical knowledge from computer graphics, such as integrat-
ing differentiable rendering [61] into model training, aiming for
high-quality rendering from sparse input data (e.g., 3D meshes or
2D images).
Two-stage Rendering. While directly feeding an SMPL-X mesh
into the neural renderer is feasible [44], it will lead to significant in-
ference overhead due to the 3D nature of inputmesh data. Therefore,
we propose a two-stage rendering: initially employing rasteriza-
tion with lighting characteristics (i.e., color semantics) to generate
low-quality 2D images [38], followed by an image-based neural
rendering model for photo-realistic results.

To ensure high-quality outcomes, the ground-truth images for
training the neural rendering model should encompass various
viewports. However, cameras are usually positioned horizontally,
making it difficult to capture images for challenging scenarios (e.g.,
when users view content with their heads tilted). Rotating cameras
during training data acquisition is not only cumbersome but also
inefficient for covering all angles. To address this problem, we im-
plement image augmentation techniques [81], including translation
and rotation, to enhance the diversity of training data and generate
images for different head-tilt viewing angles.
Patch-accelerated Inference. To improve neural-rendering effi-
ciency for immersive telepresence with stringent real-time require-
ments, we propose an optimization strategy. Our rationale is that
in certain use cases, such as teleconferencing, only a few regions
of the human body, such as the hands and head, exhibit signifi-
cant movements. In light of this, instead of rendering the entire
frame from scratch, we focus on updating specific patches3 showing
noticeable changes, reducing rendering time. To identify patches
that need updates, the receiver’s edge server calculates the move-
ment distance of each vertex in the reconstructed SMPL-X mesh.
When the distance exceeds a threshold, we interpret it as a sign of
noticeable change. We set the thresholds for different body parts
based on prior research [77]. While a similar patch-aware rendering
technique has been previously proposed by FarfetchFusion [48], it
focuses on only the head. Accurately identifying patches that do
not require updates during full-body motion without compromis-
ing rendering quality is more challenging. Additionally, different
from FarfetchFusion [48] that designates pre-defined invariant re-
gions without updates across all frames, our solution adopts a more
fine-grained approach.

While updating only patches with noticeable changes can reduce
rendering overhead, the challenge lies in patch design. We find that
both a large number of small patches and a small number of large
patches extend inference time. When the number of patches is too
small, it requires processing large areas, as human motion may
cause changes in all patches. Conversely, having too many patches
leads to high GPU memory consumption [57] and thus may lead
to congestion during inference, resulting in patches not being up-
dated simultaneously. Moreover, applying non-overlapping patches
can introduce artifacts (e.g., discontinuities) at patch boundaries.

3A patch refers to a small, rectangular/square region in an image [112].

We further observe that vertical splitting of patches adversely af-
fects visual quality, particularly in facial regions, again by causing
discontinuities in rendering. To balance these factors, our design
features eight equally sized and vertically stacked patches with
a 10% overlap across adjacent patches. This approach guarantees
spatial consistency and mitigates artifacts, providing an effective
compromise for efficient neural rendering in MagicStream. We
extensively evaluate the effects of various patch designs in §6.2.

5 IMPLEMENTATION
Hardware. We employ three ZED 2i [11] RGB-D cameras for cap-
turing telepresence users. Similar to MetaStream [39], each camera
is connected to an NVIDIA Jetson Xavier NX [9] embedded system,
which processes RGB-D images. Each edge server is equipped with
an NVIDIA RTX 4090 GPU and an AMD Ryzen 9 7900X CPU. We
use the Microsoft HoloLens 2 mixed reality (MR) headset [2] as the
client device.
Software. We employ Unreal Engine [10] to render and display
content on HoloLens 2, MediaPipe [37] to detect keypoints, and
LZMA [6] to compress SMPL-X parameters and lighting charac-
teristics. We utilize PyTorch [72] to build all deep-learning models,
including SMPL-X parameter estimation, lighting estimation, and
neural rendering.
Neural Rendering. We employ U-Net [76] as the foundational
neural rendering model. For training, we use the coarse-grained ren-
dering results from rasterization as the input (§4.3), while camera-
captured images serve as the ground truth for supervised learning.
The training process minimizes the perceptual VGG loss [43] with
a learning rate of 1e-4. We set the rendering resolution at 1280×720,
which has been shown to provide a satisfactory QoE [60].

In total, MagicStream consists of over 6,800 lines of code (LoC):
1,200+ LoC in C++ on the client side and 5,600+ LoC in Python for
the remaining components.

6 PERFORMANCE EVALUATION
6.1 Experimental Setup
Datasets. Due to the absence of publicly available telepresence
datasets, we conduct an IRB-approved user study and collect a
comprehensive dataset with 20 participants. This cohort consists
of 5 females and 15 males with an average age of 22.1±1.4 years.
Participants engage in two 10-minute sessions: teleconferencing
and dancing. While teleconferencing is the primary use case of
telepresence [21, 48], dancing is intriguing for immersive telep-
resence [46, 98], as it effectively embodies activities that entail
extensive body movements, similar to those in remote collabo-
ration [111]. The dataset includes varied poses with over 90% of
frames differing from the previous one, demonstrating the diverse
motion of participants. The dataset also presents varied lighting
conditions at different times of the day.
Baselines. We compare MagicStream with MetaStream [39] in
terms of bandwidth consumption, end-to-end latency, visual quality,
frame rate, and user experience. We further compare the SMPL-X
parameter estimation model ofMagicStream with ExPose [26] and
PIXIE [33], and the neural rendering model ofMagicStream with
X-Avatar [79], PoseVocab [55], and HumanNeRF [102].

371



SENSYS ’24, November 4–7, 2024, Hangzhou, China Ruizhi Cheng et al.

We do not compareMagicStreamwith other immersive telepres-
ence systems such as FarfetchFusion [48], Project Starline [47], and
Holoportation [71] for the following reasons. (1) FarfetchFusion
and Project Starline are not designed for full-body telepresence;
instead, they focus on a small part of the human body, such as
the face. In contrast, MagicStream supports full-body streaming,
presenting more challenges than face-only systems. (2) Holoporta-
tion and Project Starline are industrial prototypes requiring special
setups that we cannot replicate. For instance, Project Starline neces-
sitates custom-built hardware for display, which is not compatible
with mobile headsets. Finally, we do not compare MagicStream
with existing model-based streaming systems such as YuZu [115]
that benefit from 3D super-resolution to upsample delivered low-
density point clouds to high-density ones. The reason is that their
bandwidth savings are limited and depend on the super-resolution
ratio, which is typically small (e.g., 4 or 8).
Network Setup. Mobile headsets of the sender and receiver are
connected to different networks with separate Linksys WiFi routers.
The edge servers are connected to their corresponding router via
Ethernet. The two WiFi routers communicate over Ethernet, with
an average throughput of ∼150 Mbps and a one-way latency of ∼3
ms. To realistically represent Internet delays, we increase the round-
trip latency between WiFi routers to 40 ms (i.e., a typical latency
within the U.S. [30]), using Linux tc [7]. We collect four traces of
network bandwidth from different locations on a large commercial
cellular network in the U.S. and replay them using tc. Their average
bandwidths are 11.2±1.2 Mbps, 22.5±2.8 Mbps, 31.8±4.1 Mbps, and
50.4±6.1 Mbps. In the following, these conditions are referred to as
scenarios with available bandwidths of 10, 20, 30, and 50 Mbps.

6.2 Component-wise Evaluation
We first evaluate the performance of keyMagicStream components:
lighting & base color estimation, SMPL-X parameter estimation,
and neural rendering.
Estimation of Lighting Characteristics & Base Color. We use
the SMPL-X mesh as the underlying geometry to evaluate the ef-
fectiveness of our fine-tuning of the Xihe model [121] to estimate
lighting characteristics (§4.1). We compare the SSIM between the
renderings with and without the fine-tuning. We consider texture
mapping [36] that obtains colors from RGB images as the base-
line. Fine-tuning yields an SSIM of 0.91±0.03, indicating good qual-
ity [29]. Without fine-tuning, the SSIM of the rendered content
drops to 0.82±0.05. This result demonstrates the effectiveness of
our fine-tuning strategy. As we will show later, the visual quality
can be further improved by neural rendering. We also evaluate the
overhead of obtaining the base color, which takes only <1 minute.
Estimation of SMPL-X Parameters. We compare the model
of SMPL-X parameter estimation in MagicStream (§4.2) with Ex-
Pose [26] and PIXIE [33], two existing regression-based models. To
assess the effectiveness of our proposed design of keypoint-anchor
vertices, we implement another model that minimizes only the L1
loss between the output parameters and the ground truth during
training. We calculate the vertex-to-vertex (V2V) distance for the
face, hands, and full body of the mesh generated by each method
with the ground truth (§4.2), with lower values indicating better

# of Patches Overlap FPS SSIM
1 0% 6.37/1.2 0.95/0.03
4 0% 18.2/2.3 0.91/0.03
6 0% 31.5/2.6 0.86/0.08
6 10% 32.8/4.7 0.90/0.03
8 0% 40.9/3.3 0.81/0.16
8 10% 37.2/4.3 0.92/0.02
8 30% 28.4/6.8 0.92/0.03
10 10% 24.4/6.3 0.90/0.04

Table 4: FPS and SSIM for neural rendering with varying
numbers of patches and overlap percentages.

performance. Additionally, we evaluate the frame rate achieved by
each model. The results are represented in Figure 5, which shows
the 95th, 75th, 25th, and 5th percentiles, median, and mean (blue
dots). We observe that MagicStream achieves the same or even
superior accuracy over others. In terms of frame rate,MagicStream
can perform in real time (>30 FPS) with ∼5× accelerations com-
pared to ExPose and PIXIE.
Neural Rendering. We next evaluate the neural rendering model
of MagicStream, examining its patch design, comparing it with
other models [55, 79, 102], and assessing its generalizability.
Impact of Patch Design. We delve into the impact of different
patch configurations on visual quality and rendering efficiency.
We find that the vertical split of patches severely degrades visual
quality. For example, dividing the content into two vertical patches
results in an SSIM of only 0.80±0.04. This is because users typically
move horizontally, which means that vertical patch split can cause
discontinuities in the representation of the human form. Thus, we
focus on horizontal patch split.

Table 4 presents the impact of varying the number of patches
and the percentage of patch overlap on visual quality and frame
rate. Introducing a moderate number of patches gradually improves
the frame rate. Nonetheless, an excessive number of patches (e.g.,
10) can paradoxically lead to a decline in frame rate. This is because
a small number of patches necessitates processing extensive ar-
eas, whereas an excessive number of patches increases the amount
of patches to update (§4.3). Furthermore, incorporating a certain
degree of overlap between patches contributes to maintaining a
satisfactory visual quality by facilitating smoother transitions at
patch boundaries. Our results suggest that a 10% overlap strikes a
balance between visual fidelity and computational overhead, en-
suring high-quality rendering without significantly impacting the
frame rate. Excessively large overlap areas can lead to diminishing
returns, potentially processing redundant content and increasing
computational load without proportional gains in visual continuity
(e.g., a 44% drop in frame rate when increasing the overlap from 10
to 30% for the eight-patch setup). Based on our extensive evaluation,
we select a configuration of eight horizontally stacked patches with
a 10% overlap.
Comparison with Other Models. We next compare the neural
rendering model ofMagicStream with three existing approaches,
X-Avatar [79], PoseVocab [55], and HumanNeRF [102]. As shown
in Figure 6, MagicStream achieves real-time performance with
>40 FPS on average, whereas other models perform at <1 FPS.
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Additionally, MagicStream maintains comparable or even better
SSIM than other models (e.g., on average 0.92 for MagicStream
vs. 0.91 for PoseVocab [55]). The heavy computational overhead
of existing models mainly arises from their reliance on complex
rendering techniques to achieve high visual quality, such as neural
radiance fields (NeRF) [66] employed by PoseVocab [55] and Hu-
manNeRF [102], or the use of inefficient root-finding loops for 3D
model deformation, such as SNARF [20] utilized by X-Avatar [79].

In contrast, MagicStream employs several strategies to acceler-
ate neural rendering while preserving visual quality. First, it initially
generates coarse-grained 2D images based on color semantics, re-
ducing the complexity of the input to the neural rendering model
from 3D data to 2D images (§4.3). Second, MagicStream metic-
ulously designs a patch-based acceleration approach to improve
computational efficiency without compromising rendering qual-
ity (§4.3). Furthermore, the underlying neural rendering model used
byMagicStream is based on U-Net [76], which is more lightweight
than NeRF [66]. This reduction in complexity is made possible
byMagicStream’s effective model for SMPL-X parameter estima-
tion (§4.2), which accurately reconstructs the user’s body, and its
use of data augmentation techniques when training the neural
rendering model (§4.3).
Generalizability. We then verify the generalizability of the neural
rendering model of MagicStream, which should be well-trained
before each telepresence session. Ideally, it should be generaliz-
able to a novel appearance, instead of training from scratch every
time, which causes significant computation overhead. This gen-
eralizability is plausible because both motion (i.e., keypoints) and
color semantics (i.e., lighting characteristics) are inherently user-
independent. To verify this, we design an experiment in which the
same user participates in six separate trials, each time wearing a

different colored outfit. We train the neural rendering model from
scratch for the first trial and then fine-tune the trained model for
the subsequent ones. We stop the training/fine-tuning when the
SSIM of the content rendered by the model reaches 0.9, the indicator
of good visual quality [101]. Each experiment is repeated five times
with randomly selected trial orders.

Our results show that although training from scratch takes an
average of 84 minutes (SD: 13), fine-tuning for the last trial takes
only 2.7 minutes on average (SD: 0.4), which could be further re-
duced with more data for fine-tuning. This significant reduction
in training time highlights the model’s potential generalizability.
These findings align with recent efforts [79, 89, 90], which demon-
strate that neural rendering models, when trained on large and
diverse datasets, can adapt to novel appearance during inference
without requiring training from scratch or extensive fine-tuning.

6.3 End-to-end Evaluation
In this subsection, we present results in one-way telepresence. Two-
way communication mainly affects the resource utilization of edge
servers, which we will evaluate in §6.4.
Bandwidth Consumption.We compare the bandwidth consumed
by MagicStream, which delivers semantic information, and MetaS-
tream, which requires the transmission of point clouds. We observe
that by transmitting semantics instead of 3D content,MagicStream
consumes a bandwidth of only 0.2 Mbps, on average. In stark con-
trast, MetaStream results in 72.3Mbps throughput, on average, 360×
higher than that ofMagicStream. Note that MetaStream can stream
only ∼200K points per frame in real time, resulting in poor visual
quality. As we will show later, to achieve a similar visual quality as
MagicStream, MetaStream demands 1195× higher bandwidth.
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Figure 8: Comparison of (a) FPS and (b) user ratings between
our MagicStream and MetaStream (MS) with varying band-
width settings (in Mbps). “U” means unthrottled networks.
The FPS of MagicStream is not affected by available band-
width due to the small size of its transmitted data.★: 𝑝 ≤ 0.05.

End-to-end Latency. We next compare the end-to-end latency of
MagicStream andMetaStream, by breaking it down into the compu-
tation latency of the sender and the receiver and the transmission
delay, as shown in Figure 7. MagicStream achieves an average
one-way end-to-end latency of 95 ms, which satisfies the latency
requirement of interactive applications (i.e., <100 ms) [16, 18, 69].
Specifically, the sender-side processes involve keypoint detection
(∼10 ms), lighting estimation (∼10 ms), and SMPL-X parameter esti-
mation (∼30 ms). Since keypoint detection and lighting estimation
are conducted in parallel, the combined latency totals ∼40 ms. On
the receiver side, coarse-grained rendering is executed in ∼3 ms,
and neural rendering takes ∼24 ms.

In comparison,MetaStrem achieves an average latency of∼170ms,
almost 2× higher thanMagicStream. The most substantial reduc-
tion in the latency ofMagicStream can be primarily attributed to
the following factors. First, it relies on keypoint detection to iden-
tify the human body from camera-captured images, which takes
∼10 ms, as opposed to MetaStream’s approach of executing a seg-
mentation model for the same purpose, taking ∼30 ms. Second,
MagicStream efficiently executes two lightweight models in par-
allel to generate semantics on the sender. In contrast, MetaStream
needs to create and filter dense point clouds. Third,MagicStream
reduces the transmission delay to ∼20 ms (from ∼45 ms by MetaS-
tream), thanks to the considerably smaller bandwidth requirements
of extracted semantics.
Frame Rate. Figure 8(a) shows the FPS ofMagicStream and MetaS-
tream under varying network conditions. MagicStream consis-
tently reaches 30+ FPS, fulfilling the requirement for real-time
telepresence. The high frame rate is achieved because each com-
putational module, including keypoint extraction and lighting esti-
mation (∼10 ms, executed in parallel for a single frame), SMPL-X
parameter estimation (∼30 ms), and neural rendering (∼27 ms),
operates <33 ms. Additionally, MagicStream processes multiple
frames in parallel, ensuring that the overall system can achieve
>30 FPS. In contrast, MetaStream is unable to reach 30 FPS, even in
unthrottled network environments. This limitation is primarily due
to the computation overhead of point cloud synthesis/processing.
As the available bandwidth decreases, MetaStream experiences a
significant decline in frame rate, dropping to <10 FPS when the
available bandwidth is around 10 Mbps, which is largely attributed
to increased transmission latency.
User Experience. To compare the experience perceived by real
users for MagicStream and MetaStream, we conduct another user

study involving 17 participants: 4 females and 13 males, with an
average age of 21.1±1.7. They are asked to wear a HoloLens 2 head-
set and freely explore the content randomly selected from our data
collection (§6.1), similar to the setup adopted in prior work, Far-
fetchFusion [48]. The content is streamed withMagicStream and
MetaStream under different network conditions for two minutes
each. To eliminate bias, we randomize the order of streaming sys-
tems used for each viewing session, and participants do not know
which system is being used to generate the content. Upon complet-
ing the tasks, we ask participants to rate their experiences with the
7-point Likert scale (1: very bad; 7: very good) [86].

Figure 8(b) shows the ratings for MagicStream and MetaStream
under different network conditions. We utilize the Shapiro-Wilk
test [1] and find that all these ratings are not normally distributed.
Thus, we apply the Wilcoxon signed-rank test [1] to conduct a
significance test betweenMagicStream andMetaStream under each
network condition. When the available bandwidth drops below 30
Mbps, the rating of MagicStream is significantly higher than that
of MetaStream (e.g., when the available bandwidth is ∼10 Mbps,
𝑝 < 0.014; Rank-biserial correlation 𝑟 = 0.645, with an improvement
of 86.7%). This is because when the bandwidth is limited, both the
FPS and visual quality of MetaStream significantly drop. In contrast,
MagicStream is not affected by the limited bandwidth, resulting in
consistently higher user satisfaction.
Visual Quality. To evaluate the visual quality ofMagicStream, we
first quantitatively compare its SSIM [101] with MetaStream, which
is calculated between screenshots collected on HoloLens 2 and the
camera-captured ground-truth images.MagicStream achieves, on
average, an SSIM of 0.92, indicating good visual quality [29]. In con-
trast, the average SSIM of MetaStream is ∼0.8. We then qualitatively
compare the rendering results of MagicStream and MetaStream.
Specifically, we focus on rendering results for novel views (i.e., not
from camera perspectives), which is essential in telepresence as
users can freely observe their peers from different angles. This
is challenging for MagicStream as the ground-truth images for
these views may not exist in the training data for neural render-
ing. Figure 9 reveals MagicStream’s ability to render the human
body with high fidelity, unlike MetaStream, which struggles, espe-
cially in rendering faces and hands clearly. We also observe some
black spots/areas in the rendered results of MetaStream, which is
also visible in Figure 2(c). This is because RGB-D cameras may fail
to calculate depth under certain conditions such as strong ambi-
ent light [48]. In contrast, MagicStream is less affected by such
artifacts, thanks to its accurate lighting estimation and optimized
neural rendering models.
MagicStream vs.MetaStreamwithMore Points per Frame.We
next compareMagicStream and MetaStream that generates more
points per frame in order to achieve better visual quality. As shown
in Figure 10, while this approach can improve visual quality for
MetaStream, it will further increase bandwidth consumption and
transmission latency, as well as decrease frame rate. The significant
drop in frame rate is primarily due to the substantial computational

4𝑝 represents the result of the statistically significant test. 𝑝 < 0.05 is considered
statistically significant [91].
5Rank-biserial correlation 𝑟 is the effect size of the Wilcoxon signed-rank. 𝑟 > 0.1
indicates the claim is valid [65].
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Figure 9: Qualitative comparison of (a)MagicStream and (b) MetaStream for novel views.
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Figure 10: Comparison of (a) throughput at 30 FPS, (b) transmission latency (excluding the propagation delay between edge
servers), (c) FPS, and (d) SSIM forMagicStream (Ours) and MetaStream with different number of points per frame.

overhead for processing dense point clouds. When streaming 700K
points per frame, MetaStream can achieve similar visual quality as
MagicStream, but demands 1195× higher bandwidth consumption
and increases the transmission latency from 0.1 to ∼60 ms.

6.4 Resource Utilization
Finally, we evaluate the resource utilization ofMagicStream on the
edge server (i.e., commercially available machines introduced in §5)
and mobile headset (i.e.,Microsoft HoloLens 2).MagicStream uti-
lizes 7.6 GB GPU memory, <5% CPU resources, and <20% host mem-
ory on the edge server for two-way communication between two
users. To further investigateMagicStream’s scalability on resource
utilization, we simultaneously execute its models for multiple users,
each under a dedicated capturing environment, while sharing the
same edge server for computation. Our experiments reveal that
the edge server can support three concurrent users on each side
of telepresence without affectingMagicStream’s performance. To
measure on-device resource utilization, we fully charge a HoloLens
2 headset and then deploy it in a telepresence session for 1 hour
under an unthrottled network. After the 1-hour experiment, the
battery level decreases to 75%, and the average CPU/GPU utiliza-
tion is 30%/38%. Overall, we believe the resource utilization and
energy consumption ofMagicStream are acceptable.

7 DISCUSSION
Use Cases. In this paper, we benefit from the task-driven nature of
immersive telepresence that facilitates semantic communication.
This approach is particularly effective in scenarios where conveying
key elements of human interactions, rather than duplicating com-
plete 3D content, is vital, especially when the network bandwidth
is limited. For example, in teleconferencing, the pivotal elements
are often the speaker’s distinct gestures and facial expressions. Our
recent measurement study reveals that Apple FaceTime also utilizes
semantic communication to reduce bandwidth consumption for its
spatial personas on the Vision Pro headset [22]. However, semantic
communication is not a one-size-fits-all solution. In high-precision
applications such as immersive scientific data visualization [32], tra-
ditional bit-by-bit communication might be preferable. Therefore,
although MagicStream offers substantial advantages in reducing
Internet bandwidth usage, its suitability largely depends on the
specific goals and requirements of telepresence use cases.
Scalability. SinceMagicStream relies on deep-learning models for
semantics extraction and content reconstruction, the resource con-
sumption of the edge server is largely attributed to GPU memory
usage (§6.4). To improve MagicStream’s scalability, one simple so-
lution is to deploy more powerful GPUs or additional edge servers.
We can also adapt the resolution of neural rendering based on the
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viewer’s distance to the displayed content, further optimizing re-
source utilization. For example, when the viewing distance is long,
high-resolution rendering may not be necessary [40]. For multi-site
setups, it mainly increases the computation overhead of users’ edge
servers that will perform neural rendering for multiple parties. To
mitigate the computational demands on edge servers, one possible
solution is to deploy multipoint control units [34] that fuse/process
the data from users before distributing it to edge servers.
Impact of Lighting Conditions. In telepresence, lighting condi-
tions significantly influence the quality of captured content. Thus,
existing systems such as Starline [47] typically require controlled
lighting environments. For extreme scenarios, such as in dark envi-
ronments, RGB-D cameras may not function well [107], impacting
both the quality of generated point clouds and the accuracy of
keypoint extraction. In addition to employing controlled lighting,
another potential solution is to utilize LiDAR sensors to improve the
quality of captured data in challenging environments [53]. These
solutions are orthogonal to semantic communication, as they relate
to mainly data capturing.
Generalizability to Other Objects. MagicStream extracts and
transmits motion and color semantics from the captured data of
the human body to enable semantic communication. Such a de-
sign can be adapted to other objects. For motion semantics, as
MagicStream is designed for the human body with both rigid and
non-rigid movements, it can be generalized to other entities with
similar movements (e.g., animals or small children). For objects
with mainly rigid motions, for example, vehicles, we can initially
transmit their entire 3D models and subsequently only their posi-
tion/orientation as motion semantics. For color information, since
it involves only the interaction between the base color and lighting
characteristics (§4.1), this process is not specific to the human body
and can potentially be applied to other objects [120, 121].
Lower-layer Network Optimization.WhileMagicStream pre-
dominantly works on the application layer to reduce bandwidth
requirements over the Internet, ensuring reliable streaming neces-
sitates consideration of optimizations across other layers in the
protocol stack. For instance, packet loss, a common issue in Inter-
net content delivery, demands the design of a system resilient to
such losses. Implementing loss-resilient mechanisms [23] is crucial
for the seamless transmission of semantic information. Regarding
network protocols in the transport layer, the adoption of emerging
protocols such as QUIC [93] presents a more advantageous alter-
native for live video streaming compared to traditional protocols
such as TCP. However, effectively integrating QUIC into semantic
communication systems requires careful consideration of how its
features can be leveraged to prioritize and transmit semantically
relevant data efficiently, ensuring both speed and data integrity in
high-fidelity telepresence.

8 RELATEDWORK
Immersive Video Streaming. There is a plethora of work on
improving the QoE for immersive video streaming [39, 40, 47–
49, 56, 59, 60, 71, 103, 115, 117]. Among these, video-on-demand
services have been extensively studied. For instance, M5 [117] uti-
lizes 6DoF motion prediction to adapt mmWave beams for multi-
user video streaming, and Theia [103] leverages foveated stream-
ing to reduce data usage. Additionally, recent efforts focus on live

video streaming, offering a wide range of applications for telep-
resence [39, 47, 48, 71]. However, prior studies rely on bit-by-bit
transmission, leading to notable bandwidth demands. In contrast,
MagicStream introduces an innovative approach, utilizing semantic
communication to drastically reduce bandwidth usage.
3DReconstruction viaWireless Sensing. Existing efforts demon-
strate that wireless sensing, for example, via WiFi [42, 51, 52, 100]
and mmWave [54, 106, 108, 109], can be utilized for 3D reconstruc-
tion. However, as wireless sensing cannot capture color information,
these studies either focus on keypoint detection [42, 54, 109], sim-
ilar to the extraction of motion semantics in MagicStream (§4.1),
or non-textured mesh reconstruction [100, 106, 108], similar to the
reconstruction from motion semantics inMagicStream (§4.2).
Semantic Communication has garnered substantial interest for
its potential to reduce transmission overhead [21, 63, 80, 104, 105,
116, 123]. Initial work primarily concentrates on its direct inter-
pretation, targeting the delivery of text data [104]. Subsequent
advancements in the field have extended this concept to include
a wider range of modalities, such as images [105], broadening the
applications of semantic communication into various new domains,
for example, the emerging Metaverse [116]. A recent work [123]
loosely uses the term “semantics” as it is similar to traditional point
cloud compression techniques, achieving only limited bandwidth
reduction [21]. In contrast,MagicStream significantly reduces band-
width consumption while maintaining high-quality rendering.
Keypoint-driven 2DVideos.Recent studies have begun to explore
the use of keypoints in 2D video streaming due to their informative-
ness [70, 82, 96, 99, 113], such as generating neural models for head
avatars [99, 113]. However, these studies are confined to 2D videos.
MagicStream diverges from this path by leveraging keypoints for
streaming 3D content, which is more complex but enables more
dynamic and engaging use cases than conventional 2D videos.

9 CONCLUSION
In this paper, we presented the design, implementation, and com-
prehensive evaluation of MagicStream, a novel semantic-driven
immersive telepresence system. MagicStream excels in precisely
extracting and efficiently delivering semantics of body motion and
skin/cloth color, as well as in effectively reconstructing and render-
ing immersive content based on received semantic details. This ap-
proach substantially reduces Internet bandwidth usage while main-
taining low end-to-end latency and a satisfactory visual quality. Our
thorough performance evaluations demonstrate that MagicStream
significantly outperforms state-of-the-art solutions. We hope our
study can pave the way for future advancements in semantic-based
immersive telepresence, promising to expand the reach of holo-
graphic communication.

ACKNOWLEDGMENT
We thank the anonymous reviewers and our shepherd for their
insightful feedback, which has greatly strengthened this work. Ad-
ditionally, we sincerely thank the participants of our user studies
and experiments for their invaluable time and contributions, en-
abling us to gather meaningful data and validate our findings. This
work was partially supported by the National Science Foundation
under Grants CNS-2212296 and CNS-2235049.

376



MagicStream: Bandwidth-conserving Immersive Telepresence via Semantic Communication SENSYS ’24, November 4–7, 2024, Hangzhou, China

REFERENCES
[1] 2014. Statistical Methods for HCI Research. https://yatani.jp/teaching/doku.

php?id=hcistats:start. [accessed on 10/07/2024].
[2] 2019. Microsoft HoloLens 2. https://www.microsoft.com/en-us/hololens. [ac-

cessed on 10/07/2024].
[3] 2021. H.264 : Advanced video coding for generic audiovisual services. https:

//www.itu.int/rec/T-REC-H.264. [accessed on 10/07/2024].
[4] 2024. Axis–angle Representation. https://en.wikipedia.org/wiki/Axis-angle_

representation.
[5] 2024. Draco 3D Data Compression. https://google.github.io/draco/. [accessed

on 10/07/2024].
[6] 2024. Lempel–Ziv–Markov Chain Algorithm. https://en.wikipedia.org/wiki/

Lempel-Ziv-Markov_chain_algorithm. [accessed on 10/07/2024].
[7] 2024. Linux TC Man Page. https://linux.die.net/man/8/tc.
[8] 2024. LZ4 (compression algorithm). https://en.wikipedia.org/wiki/LZ4_

(compression_algorithm). [accessed on 10/07/2024].
[9] 2024. Nvidia Jetson Technical Specifications. https://developer.nvidia.com/

embedded/jetson-modules.
[10] 2024. Unreal Engine. https://www.unrealengine.com. [accessed on 10/07/2024].
[11] 2024. ZED 2i. https://www.stereolabs.com/zed-2i/l. [accessed on 10/07/2024].
[12] 2024. zlib. https://en.wikipedia.org/wiki/Zlib. [accessed on 10/07/2024].
[13] 2024. Zstandard. https://facebook.github.io/zstd/. [accessed on 10/07/2024].
[14] Lukas Ahrenberg, Philip Benzie, Marcus Magnor, and John Watson. 2008.

Computer Generated Holograms from Three Dimensional Meshes using an
Analytic Light Transport Modell. Applied Optics 47, 10 (2008), 1567–1574.
https://doi.org/10.1364/AO.47.001567

[15] Paramvir Bahl and Venkata N Padmanabhan. 2000. RADAR: an In-Building
RF-based User Location and Tracking System . In Proceedings of IEEE INFOCOM.

[16] Mario Baldi and Yoram Ofek. 2000. End-to-end Delay Analysis of Videoconfer-
encing Over Packet-switched Networks. IEEE/ACM Transactions On Networking
8, 4 (2000), 479–492.

[17] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. 2017. Realtime Multi-
Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of IEEE/CVF
CVPR.

[18] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low
Latency. In Proceedings of ACM SenSys.

[19] Rick H-Y Chen and Timothy DWilkinson. 2009. Computer Generated Hologram
from Point Cloud using Graphics Processor. Applied Optics 48, 6 (2009), 6841–
6850. https://doi.org/10.1364/AO.48.006841

[20] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges, and Andreas Geiger.
2021. SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural
Implicit Shapes. In Proceedings of IEEE/CVF CVPR.

[21] Ruizhi Cheng, Kaiyan Liu, Nan Wu, and Bo Han. 2023. Enriching Telepresence
with Semantic-driven Holographic Communication. In Proceddings of ACM
Workshop on Hot Topics in Networks (HotNets).

[22] Ruizhi Cheng, Nan Wu, Matteo Varvello, Eugene Chai, Songqing Chen, and Bo
Han. 2024. A First Look at Immersive Telepresence on Apple Vision Pro. In
Proceedings of ACM Internet Measurement Conference (IMC).

[23] Yihua Cheng, Ziyi Zhang, Hanchen Li, Anton Arapin, Yue Zhang, Qizheng
Zhang, Yuhan Liu, Kuntai Du, Xu Zhang, Francis Y Yan, et al. 2024. GRACE:Loss-
Resilient Real-Time Video through Neural Codecs. In Proceedings of NSDI 24.

[24] Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. 2020. Pose2Mesh: Graph
Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D
Human Pose. In Proceedings of ECCV.

[25] Paul J Choi, Rod J Oskouian, and R. Shane Tubbs. 2018. Telesurgery: Past,
Present, and Future. Cureus 10, 5 (2018), e2716.

[26] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dimitrios Tzionas, and
Michael J Black. 2020. Monocular Expressive Body Regression Through Body-
Driven Attention. In Proceedings of ECCV.

[27] Jen-Li Chung, Lee-Yeng Ong, and Meng-Chew Leow. 2022. Comparative Anal-
ysis of Skeleton-based Human Pose Estimation. Future Internet 14, 12 (2022),
380.

[28] Federal Communications Commission. 2024. FCC Increases Broadband Speed
Benchmark. https://docs.fcc.gov/public/attachments/DOC-401205A1.pdf.

[29] Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, Stefan
Saroiu, and Madanlal Musuvathi. 2015. Kahawai: High-Quality Mobile Gaming
Using GPU Offload. In Proceedings of ACM MobiSys. https://doi.org/10.1145/
2742647.2742657

[30] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski,
Jörg Ott, and Jussi Kangasharju. 2021. Cloudy with a Chance of Short RTTs:
Analyzing Cloud Connectivity in the Internet. In Proceedings of ACM Internet
Measurement Conference (IMC).

[31] Chamitha De Alwis, Anshuman Kalla, Quoc-Viet Pham, Pardeep Kumar, Kapal
Dev, Won-Joo Hwang, and Madhusanka Liyanage. 2021. Survey on 6G Frontiers:
Trends, Applications, Requirements, Technologies and Future Research. IEEE
Open Journal of the Communications Society 2 (2021), 836–886.

[32] Ciro Donalek, S George Djorgovski, Alex Cioc, Anwell Wang, Jerry Zhang,
Elizabeth Lawler, Stacy Yeh, Ashish Mahabal, Matthew Graham, Andrew Drake,
et al. 2014. Immersive and Collaborative Data Visualization Using Virtual Reality
Platforms. In Proceddings of IEEE International Conference on Big Data (Big Data).

[33] Yao Feng, Vasileios Choutas, Timo Bolkart, Dimitrios Tzionas, and Michael J
Black. 2021. Collaborative Regression of Expressive Bodies Using Moderation.
In Proceedings of International Conference on 3D Vision (3DV).

[34] Sergi Fernandez,MarioMontagud, David Rincón, JuameMoragues, andGianluca
Cernigliaro. 2023. Addressing Scalability for Real-timeMultiuser Holo-portation:
Introducing and Assessing a Multipoint Control Unit (MCU) for Volumetric
Video. In Proceedings of ACM International Conference on Multimedia (MM).

[35] James D Foley. 1996. Computer Graphics: Principles and Practice. Vol. 12110.
Addison-Wesley Professional.

[36] Yanping Fu, Qingan Yan, Long Yang, Jie Liao, and Chunxia Xiao. 2018. Texture
Mapping for 3D Reconstruction with Rgb-d Sensor. In Proceedings of IEEE/CVF
CVPR.

[37] Google. 2024. Face landmark detection guide. https://developers.google.com/
mediapipe/solutions/vision/face_landmarker. [accessed on 10/07/2024].

[38] Robin Green. 2003. Spherical harmonic lighting: The gritty Details. In Archives
of the Game Developers Conference.

[39] Yongjie Guan, Xueyu Hou, Nan Wu, Bo Han, and Tao Han. 2023. MetaStream:
Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real
Time. In Proceedings of ACM MobiCom.

[40] Bo Han, Yu Liu, and Feng Qian. 2020. ViVo: Visibility-Aware Mobile Volumetric
Video Streaming. In Proceedings of ACM MobiCom.

[41] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. 2013.
Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sens-
ing in Natural Environments. IEEE Transactions on Pattern Analysis and Machine
Intelligence 36, 7 (2013), 1325–1339.

[42] Sijie Ji, Xuanye Zhang, Yuanqing Zheng, and Mo Li. 2023. Construct 3D Hand
Skeleton with Commercial WiFi. In Proceedings of ACM SenSys.

[43] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for
Real-time Style Transfer and Super-resolution. In Proceedings of ECCV.

[44] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh
Renderer. In Proceedings of IEEE/CVF CVPR.

[45] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O’Sullivan. 2007. Skinning
with Dual Quaternions. In Proceedings of Symposium on Interactive 3D Graphics
and Games.

[46] Gregorij Kurillo, Ruzena Bajcsy, Klara Nahrsted, and Oliver Kreylos. 2008. Im-
mersive 3D Environment for Remote Collaboration and Training of Physical
Activities. In Proceedings of IEEE Conference Virtual Reality and 3D User Interfaces
(VR).

[47] Jason Lawrence, Danb Goldman, Supreeth Achar, Gregory Major Blascovich,
Joseph G Desloge, Tommy Fortes, Eric M Gomez, Sascha Häberling, Hugues
Hoppe, Andy Huibers, et al. 2021. Project Starline: a High-fidelity Telepresence
System. ACM Transactions on Graphics (TOG) 40, 6 (2021), 1–16.

[48] Kyungjin Lee, Juheon Yi, and Youngki Lee. 2023. FarfetchFusion: Towards Fully
Mobile Live 3D Telepresence Platform. In Proceedings of ACM MobiCom.

[49] Kyungjin Lee, Juheon Yi, Youngki Lee, Sunghyun Choi, and Young Min Kim.
2020. GROOT: a Real-time Streaming System of High-fidelity Volumetric Videos.
In Proceedings of ACM MobiCom. https://doi.org/10.1145/3372224.3419214

[50] Chloe LeGendre, Wan-Chun Ma, Rohit Pandey, Sean Fanello, Christoph Rhe-
mann, Jason Dourgarian, Jay Busch, and Paul Debevec. 2020. Learning Illumi-
nation from Diverse Portraits. In SIGGRAPH Asia Technical Communications.

[51] Chenning Li, Li Liu, Zhichao Cao, and Mi Zhang. 2022. WiVelo: Fine-grained
Walking Velocity Estimation for Wi-Fi Passive Tracking. In Proceedings of IEEE
SECON.

[52] Chenning Li, Manni Liu, and Zhichao Cao. 2020. WiHF: Enable User Identified
Gesture Recognition with WiFi. In Proceedings of IEEE INFOCOM.

[53] Jialian Li, Jingyi Zhang, ZhiyongWang, Siqi Shen, ChengluWen, YuexinMa, Lan
Xu, Jingyi Yu, and Cheng Wang. 2022. LiDARCap: Long-range Marker-less 3D
Human Motion Capture with LiDAR Point Clouds. In Proceedings of IEEE/CVF
CVPR.

[54] Wenwei Li, Ruofeng Liu, Shuai Wang, Dongjiang Cao, and Wenchao Jiang. 2023.
Egocentric Human Pose Estimation using Head-mounted mmWave Radar. In
Proceedings of ACM SenSys.

[55] Zhe Li, Zerong Zheng, Yuxiao Liu, Boyao Zhou, and Yebin Liu. 2023. PoseVocab:
Learning Joint-structured Pose Embeddings for Human Avatar Modeling. In
Proceedings of ACM SIGGRAPH.

[56] Zhicheng Liang, Junhua Liu, MalleshamDasari, and FangxinWang. 2024. Fumos:
Neural Compression and Progressive Refinement for Continuous Point Cloud
Video Streaming. In Proceedings of IEEE Conference Virtual Reality and 3D User
Interfaces (VR).

[57] Ji Lin, Wei-Ming Chen, Han Cai, Chuang Gan, and Song Han. 2021. MCUNetV2:
Memory-Efficient Patch-based Inference for Tiny Deep Learning. In Proceedings
of Annual Conference on Neural Information Processing Systems (NeurIPS).

377

https://yatani.jp/teaching/doku.php?id=hcistats:start
https://yatani.jp/teaching/doku.php?id=hcistats:start
https://www.microsoft.com/en-us/hololens
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.264
https://en.wikipedia.org/wiki/Axis-angle_representation
https://en.wikipedia.org/wiki/Axis-angle_representation
https://google.github.io/draco/
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
https://linux.die.net/man/8/tc
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://en.wikipedia.org/wiki/LZ4_(compression_algorithm)
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://www.unrealengine.com
https://www.stereolabs.com/zed-2i/l
https://en.wikipedia.org/wiki/Zlib
https://facebook.github.io/zstd/
https://doi.org/10.1364/AO.47.001567
https://doi.org/10.1364/AO.48.006841
https://docs.fcc.gov/public/attachments/DOC-401205A1.pdf
https://doi.org/10.1145/2742647.2742657
https://doi.org/10.1145/2742647.2742657
https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://doi.org/10.1145/3372224.3419214


SENSYS ’24, November 4–7, 2024, Hangzhou, China Ruizhi Cheng et al.

[58] Kevin Lin, Lijuan Wang, and Zicheng Liu. 2021. End-to-end Human Pose and
Mesh Reconstruction with Transformers. In Proceedings of IEEE/CVF CVPR.

[59] Junhua Liu, Boxiang Zhu, Fangxin Wang, Yili Jin, Wenyi Zhang, Zihan Xu,
and Shuguang Cui. 2023. CaV3: Cache-assisted Viewport Adaptive Volumetric
Video Streaming. In Proceedings of IEEE Conference Virtual Reality and 3D User
Interfaces (VR).

[60] Yu Liu, Bo Han, Feng Qian, Arvind Narayanan, and Zhi-Li Zhang. 2022. Vues:
Practical Mobile Volumetric Video Streaming Through Multiview Transcoding.
In Proceedings of ACM MobiCom. https://doi.org/10.1145/3495243.3517027

[61] Matthew M Loper and Michael J Black. 2014. OpenDR: An Approximate Differ-
entiable Renderer. In Proceedings of ECCV.

[62] Camillo Lugaresi, Jiuqiang Tang, HadonNash, ChrisMcClanahan, Esha Uboweja,
Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun Lee,
et al. 2019. Mediapipe: A Framework for Building Perception Pipelines. https:
//arxiv.org/pdf/1906.08172.pdf. [accessed on 10/07/2024].

[63] Xuewen Luo, Hsiao-Hwa Chen, and Qing Guo. 2022. Semantic Communica-
tions: Overview, Open Issues, and Future Research Directions. IEEE Wireless
Communications 29, 1 (2022), 210–219.

[64] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Measur-
ing the Performance and Network Utilization of Popular Video Conferencing
Applications. In Proceedings of ACM IMC.

[65] Esther Lopez Martin and Diego Ardura Martinez. 2023. The Effect Size in
Scientific Publication. Educacion XX1 26, 1 (2023), 09–17.

[66] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi
Ramamoorthi, and Ren Ng. 2021. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. Commun. ACM 65, 1 (2021), 99–106.

[67] Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. 2022. Accurate 3D Hand
Pose Estimation for Whole-Body 3D Human Mesh Estimation. In Proceedings of
IEEE/CVF CVPR.

[68] Gyeongsik Moon and Kyoung Mu Lee. 2020. I2L-MeshNet: Image-to-Lixel
Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a
Single RGB Image. In Proceedings of ECCV.

[69] Jakob Nielsen. 1994. Usability Engineering. Morgan Kaufmann.
[70] Maxime Oquab, Pierre Stock, Daniel Haziza, Tao Xu, Peizhao Zhang, Onur

Celebi, Yana Hasson, Patrick Labatut, Bobo Bose-Kolanu, Thibault Peyronel,
et al. 2021. Low bandwidth video-chat compression using deep generative
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2388–2397.

[71] Sergio Orts-Escolano, Christoph Rhemann, Sean Fanello, Wayne Chang, Adarsh
Kowdle, Yury Degtyarev, David Kim, Philip L Davidson, Sameh Khamis, Ming-
song Dou, et al. 2016. Holoportation: Virtual 3D Teleportation in Real-time.
In Proceedings of ACM Symposium on User Interface Software and Technology
(UIST).

[72] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. 2019. Pytorch: An Imperative Style, High-performance Deep Learning
Library. In Proceedings of Conference on Neural Information Processing Systems
(NIPS).

[73] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani, Timo Bolkart, Ahmed AA
Osman, Dimitrios Tzionas, and Michael J Black. 2019. Expressive Body Capture:
3D Hands, Face, and Body from a Single Image. In Proceedings of IEEE/CVF
CVPR.

[74] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 2019.
3D Human Pose Estimation in Video with Temporal Convolutions and Semi-
supervised Training. In Proceedings of IEEE/CVF CVPR.

[75] Puntawat Ponglertnapakorn, Nontawat Tritrong, and Supasorn Suwajanakorn.
2023. DiFaReli: Diffusion Face Relighting. In Proceedings of IEEE/CVF ICCV.

[76] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
Networks for Biomedical Image Segmentation. In Proceedings of International
Conference on Medical Image Computing and Computer Assisted Intervention.

[77] Matteo Ruggero Ronchi and Pietro Perona. 2017. Benchmarking and Error
Diagnosis in Multi-instance Pose Estimation. In Proceedings of IEEE/CVF ICCV.

[78] Ruslan Salakhutdinov. 2015. Learning Deep Generative Models. Annual Review
of Statistics and Its Application 2 (2015), 361–385.

[79] Kaiyue Shen, Chen Guo, Manuel Kaufmann, Juan Jose Zarate, Julien Valentin,
Jie Song, and Otmar Hilliges. 2023. X-avatar: Expressive Human Avatars. In
Proceedings of IEEE/CVF CVPR.

[80] Guangming Shi, Yong Xiao, Yingyu Li, and Xuemei Xie. 2021. From Semantic
Communication to Semantic-Aware Networking: Model, Architecture, and Open
Problems. IEEE Communications Magazine 59, 8 (2021), 44–50.

[81] Connor Shorten and Taghi M Khoshgoftaar. 2019. A Survey on Image Data
Augmentation for Deep Learning. Journal of big data 6, 1 (2019), 1–48.

[82] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and
Nicu Sebe. 2019. First Order Motion Model for Image Animation. In Proceedings
of Advances in Neural Information Processing Systems (NIPS).

[83] Vibhaalakshmi Sivaraman, Pantea Karimi, Vedantha Venkatapathy, Mehrdad
Khani, Sadjad Fouladi, Mohammad Alizadeh, Frédo Durand, and Vivienne Sze.
2024. Gemino: Practical and Robust Neural Compression for Video Conferencing.

In Proceedings of USENIX NSDI.
[84] Liangchen Song, Gang Yu, Junsong Yuan, and Zicheng Liu. 2021. Human Pose

Estimation and Its Application to Action Recognition: A Survey. Journal of
Visual Communication and Image Representation 76 (2021), 103055.

[85] Emilio Calvanese Strinati, Sergio Barbarossa, Jose Luis Gonzalez-Jimenez, Dim-
itri Ktenas, Nicolas Cassiau, Luc Maret, and Cedric Dehos. 2019. 6G: The Next
Frontier: From Holographic Messaging to Artificial Intelligence Using Subtera-
hertz and Visible Light Communication. IEEE Vehicular Technology Magazine
14, 3 (2019), 42–50. https://doi.org/10.1109/MVT.2019.2921162

[86] Gail M Sullivan and Anthony R Artino Jr. 2013. Analyzing and Interpreting
Data From Likert-Type Scales. Journal of Graduate Medical Education 5, 4 (2013),
541–542. https://doi.org/10.4300/JGME-5-4-18

[87] Daichi Tajima, Yoshihiro Kanamori, and Yuki Endo. 2021. Relighting Humans
in the Wild: Monocular Full-Body Human Relighting with Domain Adaptation.
In Computer Graphics Forum, Vol. 40. 205–216.

[88] Faisal Tariq, Muhammad RA Khandaker, Kai-Kit Wong, Muhammad A Imran,
Mehdi Bennis, and Merouane Debbah. 2020. A Speculative Study on 6G. IEEE
Wireless Communications 27, 4 (2020), 118–125.

[89] Ayush Tewari, Ohad Fried, Justus Thies, Vincent Sitzmann, Stephen Lom-
bardi, Kalyan Sunkavalli, Ricardo Martin-Brualla, Tomas Simon, Jason Saragih,
Matthias Nießner, et al. 2020. State of the Art on Neural Rendering. In Computer
Graphics Forum, Vol. 39. 701–727.

[90] Justus Thies, Michael Zollhöfer, and Matthias Nießner. 2019. Deferred Neu-
ral Rendering: Image Synthesis Using Neural Textures. Acm Transactions on
Graphics (TOG) 38, 4 (2019), 1–12.

[91] Matthew S Thiese, Brenden Ronna, and Ulrike Ott. 2016. P value interpretations
and considerations. Journal of Thoracic Disease 8, 9 (2016), E928.

[92] Balasaravanan Thoravi Kumaravel, Fraser Anderson, George Fitzmaurice, Bjo-
ern Hartmann, and Tovi Grossman. 2019. Loki: Facilitating Remote Instruction of
Physical Tasks Using Bi-Directional Mixed-Reality Telepresence . In Proceedings
of ACM Symposium on User Interface Software and Technology (UIST).

[93] Jean-Marc Valin, Koen Vos, and Tim Terriberry. 2021. QUIC: A UDP-Based
Multiplexed and Secure Transport. RFC 9000. https://datatracker.ietf.org/doc/
html/rfc9000 [accessed on 10/07/2024].

[94] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
You Need. In Proceedings of Conference on Neural Information Processing Systems
(NIPS).

[95] Irene Viola and Pablo Cesar. 2023. Volumetric Video Streaming: Current Ap-
proaches and Implementations. Immersive Video Technologies (2023).

[96] Anna Volokitin, Stefan Brugger, Ali Benlalah, Sebastian Martin, Brian Amberg,
and Michael Tschannen. 2022. Neural Face Video Compression using Multiple
Views. In Proceedings of the IEEE/CVF CVPR.

[97] Kenneth J Waldron and James Schmiedeler. 2016. Kinematics. In Springer
Handbook of Robotics. 11–36.

[98] Liao Wang, Qiang Hu, Qihan He, Ziyu Wang, Jingyi Yu, Tinne Tuytelaars, Lan
Xu, and Minye Wu. 2023. Neural Residual Radiance Fields for Streamably
Free-Viewpoint Videos. In Proceedings of IEEE/CVF CVPR.

[99] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. 2021. One-shot free-view
neural talking-head synthesis for video conferencing. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 10039–10049.

[100] Yichao Wang, Yili Ren, Yingying Chen, and Jie Yang. 2022. Wi-Mesh: A WiFi
Vision-based Approach for 3D Human Mesh Construction. In Proceedings of
ACM SenSys.

[101] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Im-
age Quality Assessment: from Error Visibility to Structural Similarity. IEEE
transactions on image processing 13, 4 (2004), 600–612.

[102] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira
Kemelmacher-Shlizerman. 2022. HumanNeRF: Free-viewpoint Rendering of
Moving People from Monocular Video. In Proceedings of IEEE/CVF CVPR.

[103] Nan Wu, Kaiyan Liu, Ruizhi Cheng, Bo Han, and Puqi Zhou. 2024. Theia: Gaze-
driven and Perception-aware Volumetric Content Delivery for Mixed Reality
Headsets. In Proceedings of ACM MobiSys.

[104] Huiqiang Xie, Zhijin Qin, Geoffrey Ye Li, and Biing-Hwang Juang. 2021. Deep
Learning Enabled Semantic Communication Systems. IEEE Transactions on
Signal Processing 69 (2021), 2663–2675.

[105] Huiqiang Xie, Zhijin Qin, Xiaoming Tao, and Khaled B Letaief. 2022. Task-
Oriented Multi-user Semantic Communications. IEEE Journal on Selected Areas
in Communications 40, 9 (2022), 2584–2597.

[106] Jiahong Xie, Hao Kong, Jiadi Yu, Yingying Chen, Linghe Kong, Yanmin Zhu,
and Feilong Tang. 2023. mm3DFace: Nonintrusive 3D Facial Reconstruction
Leveraging mmWave Signals. In Proceedings of ACM MobiSys.

[107] Zhiyuan Xie, Xiaomin Ouyang, Li Pan,Wenrui Lu, Guoliang Xing, and Xiaoming
Liu. 2023. Mozart: A Mobile ToF System for Sensing in the Dark through Phase
Manipulation. In Proceedings ACM MobiSys.

[108] Hongfei Xue, Qiming Cao, Yan Ju, Haochen Hu, Haoyu Wang, Aidong Zhang,
and Lu Su. 2022. M4esh: mmWave-based 3D Human Mesh Construction for

378

https://doi.org/10.1145/3495243.3517027
https://arxiv.org/pdf/1906.08172.pdf
https://arxiv.org/pdf/1906.08172.pdf
https://doi.org/10.1109/MVT.2019.2921162
https://doi.org/10.4300/JGME-5-4-18
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/rfc9000


MagicStream: Bandwidth-conserving Immersive Telepresence via Semantic Communication SENSYS ’24, November 4–7, 2024, Hangzhou, China

Multiple Subjects. In Proceedings of ACM SenSys.
[109] Hongfei Xue, Qiming Cao, Chenglin Miao, Yan Ju, Haochen Hu, Aidong Zhang,

and Lu Su. 2023. Towards Generalized mmWave-based Human Pose Estimation
through Signal Augmentation. In Proceedings of ACM MobiCom.

[110] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2023. Diffusion Models: A
Comprehensive Survey of Methods and Applications. Comput. Surveys 56, 4
(2023), 1–39.

[111] Zhenyu Yang, Bin Yu, Wanmin Wu, Ross Diankov, and Ruzena Bajscy. 2006.
Collaborative Dancing in Tele-immersive Environment. In Proceedings of ACM
International Conference on Multimedia.

[112] Sergey Zagoruyko and Nikos Komodakis. 2015. Learning to Compare Image
Patches via Convolutional Neural Networks. In Proceedings of the IEEE/CVF
CVPR.

[113] Egor Zakharov, Aleksei Ivakhnenko, Aliaksandra Shysheya, and Victor Lempit-
sky. 2020. Fast Bi-layer Neural Synthesis of One-shot Realistic Head Avatars. In
Proceedings of ECCV.

[114] Emin Zerman, Cagri Ozcinar, Pan Gao, and Aljosa Smolic. 2020. Textured Mesh
vs Coloured Point Cloud: A Subjective Study for Volumetric Video Compression.
In Proceedings of International Conference on Quality of Multimedia Experience
(QoMEX).

[115] Anlan Zhang, Chendong Wang, Bo Han, and Feng Qian. 2022. YuZu: Neural-
enhanced Volumetric Video Streaming. In Proceedings of USENIX NSDI.

[116] Bowen Zhang, Zhijin Qin, Yiyu Guo, and Geoffrey Ye Li. 2022. Semantic Sensing
and Communications for Ultimate Extended Reality. https://arxiv.org/abs/2212.
08533. [accessed on 10/07/2024].

[117] Ding Zhang, Puqi Zhou, Bo Han, and Parth Pathak. 2022. M5: Facilitating Multi-
User Volumetric Content Delivery with Multi-Lobe Multicast over mmWave. In
Proceedings of ACM SenSys. https://doi.org/10.1145/3560905.3568540

[118] Tianshu Zhang, Buzhen Huang, and Yangang Wang. 2020. Object-occluded
Human Shape and Pose Estimation from a Single Color Image. In Proceedings of
IEEE/CVF CVPR.

[119] Mingmin Zhao, Yonglong Tian, Hang Zhao, Mohammad Abu Alsheikh, Tian-
hong Li, Rumen Hristov, Zachary Kabelac, Dina Katabi, and Antonio Torralba.
2018. RF-based 3D Skeletons. In Proceedings of ACM SIGCOMM.

[120] Yiqin Zhao and Tian Guo. 2020. PointAR: Efficient Lighting Estimation for
Mobile Augmented Reality. In Proceedings of ECCV.

[121] Yiqin Zhao and Tian Guo. 2021. Xihe: a 3D Vision-based Lighting Estimation
Framework for Mobile Augmented Reality. In Proceedings of MobiSys.

[122] Zerong Zheng, Tao Yu, Yebin Liu, and Qionghai Dai. 2021. PaMIR: Parametric
Model-Conditioned Implicit Representation for Image-based Human Recon-
struction. IEEE Transactions on Pattern Analysis and Machine Intelligence 44, 6
(2021), 3170–3184.

[123] Yuanwei Zhu, Yakun Huang, Xiuquan Qiao, Zhijie Tan, Boyuan Bai, Huadong
Ma, and Schahram Dustdar. 2022. A Semantic-aware Transmission with Adap-
tive Control Scheme for Volumetric Video Service. IEEE Transactions on Multi-
media 25 (2022), 7160–7172.

379

https://arxiv.org/abs/2212.08533
https://arxiv.org/abs/2212.08533
https://doi.org/10.1145/3560905.3568540

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Background
	2.2 Motivational Study

	3 Overview of MagicStream
	4 MagicStream Design
	4.1 Efficient Extraction of Color and Motion Semantics from RGB-D Data
	4.2 Real-time Human Body Reconstruction from Motion Semantics
	4.3 On-the-fly Neural Rendering with Color Semantics

	5 Implementation
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Component-wise Evaluation
	6.3 End-to-end Evaluation
	6.4 Resource Utilization

	7 Discussion
	8 Related Work
	9 Conclusion
	References

